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Very little is known about the odd factors of the class numbers of quadratic num-
ber fields. It seems as if from relation between fields, which can be expressed most
clearly through their discriminants, hardly a relation between their class groups can
be derived. For example one might think that if the class groups of two fields Q(

√
a )

and Q(
√
b ) are known, something can be said about the field Q(

√
ab ) contained

in the compositum Q(
√
a,
√
b ) that goes beyond simple statements concerning the

number of genera. But comparing class number tables will hardly lead to any con-
nection between the odd factors of class numbers of three quadratic fields Q(

√
a ),

Q(
√
b ), Q(

√
c ); abc = e2. In addition it is known that the odd component of the

class group of the compositum Q(
√
a,
√
b ) is the direct sum of the odd components

of the fields Q(
√
a ), Q(

√
b ), Q(

√
c ).1 Thus it seems as if the three odd class num-

ber factors of the three quadratic number fields have nothing to do with each other.
In fact one may state conjectures such as the following:

If the quadratic number fields with class number divisible by the odd prime number
p have a density, then for triples of dependent quadratic number fields the densi-
ties with respect to divisibility and nondivisibility are the products of the individual
densities.

Here we have ordered the fields with respect to their absolute discriminant and
the product of the discriminants, respectively.

Or more strongly: if we fix one quadratic field Q(
√
δ ), then the other quadratic

number fields come in pairs Q(
√
∂ ), Q(

√
δ∂ ). In general, there will be no relation

between their odd class groups.
There is one case, however, where such a relation holds. Let us take Q(

√
−3 ) as

one of the three fields, and let us compare the class groups of the fields Q(
√
∂ ) and

Q(
√
−3∂ ); then the following relation holds between the 3-class groups of these

fields:

Theorem 1. Let r denote the 3-rank of the class group of the imaginary field among
Q(
√
∂ ) and Q(

√
−3∂ ), and s the 3-rank of the real field (thus there are 3r − 1 and

3s − 1 ideal classes of order 3, respectively), then we have

s ≤ r ≤ s+ 1.

If, for example, the complex number field Q(
√
−∆ ) has a class number not

divisible by 3, then so does the real field Q(
√

3∆ ). If Q(
√
−∆ ) has a cyclic 3-class

group (r = 1), then Q(
√

3∆ ) either has a cyclic 3-class group (s = 1) or its 3-class
number is not divisible by 3 at all (s = 0) etc. Here it is irrelevant which of the

1Cf. the exposition by F. Pollaczek on pp. 534–535 in “Über die Einheiten relativ-abelscher
Zahlkörper”, Math. Zeitschr. 30 (1929), which is also valid for l = 2.

1



2 A. SCHOLZ

two discriminants is divisible by 3. Whether we have s = r or s = r − 1 has to be
determined in a different way.

We now come to the proof, and we will use the notation above; in addition we
set Q(

√
−∆ ) = K and Q(

√
3∆ ) = C. The direct application of class field theory

to cubic number fields 2 shows that there exist exactly r independent3 cubic (non-
normal) number fields with discriminant −∆ which, when lifted to Q(

√
−∆ ), are

cyclic unramified extensions of Q(
√
−∆ ). These r number fields are generated by

elements of the form

θρ =
3
√
aρ + bρ

√
3∆ +

3
√
aρ − bρ

√
3∆

= θ′ρ + θ′′ρ = 3
√
α′
ρ + 3

√
α′′
ρ (ρ = 1, . . . , r).

Thus K(θρ) is class field and, after adjoining
√
−3, CK(θρ) = CK(θ′ρ) is class field

over K(
√
−3 ) = CK. Here θρ may be replaced by θ′ρ: in fact, since α′

ρ · α′′
ρ is a

cube (actually the cube of p3 if θρ satisfies the equation x3−px− q = 0), we get the

same extension over CK by adjoining 3
√
α′
ρ , 3

√
α′′
ρ or 3

√
α′
ρ + 3

√
α′′
ρ . It follows

from the fact that CK(θ′ρ) is class field that α′
ρ is a singular primary element for

the exponent 3, i.e., an ideal cube and a cubic residue modulo 33/2; conversely this
is a sufficient condition for CK(θ′ρ) to be unramified.4 Now α′

ρ is an element of C.
Thus if it is an ideal cube in CK it must already be an ideal cube in C since CK
has degree 2 over C.

To each ideal group in K with index 3 there corresponds an ideal cube α′
ρ in C

whose cube root generates the associated class field over CK. Here the elements
α′
1, α

′
2, . . . , α

′
r must be independent modulo cubes of elements of CK, or, equiva-

lently due to arguments involving the degree, of elements of C, i.e.,
∏
α′
ρ
aρ = γ3

(γ in C) if and only if all aρ ≡ 0 mod 3: in fact their cube roots generate r cubic
extensions that are independent over CK.

In an arbitrary number field we denote by

Z the group of elements that are ideal cubes, and by Z3 the group of cubes;
J the class group, by J3 the subgroup of cubes in J ;
E the unit group, and by E3 its subgroup of cubes.

We will denote the order of the factor group A/B by [A : B]. Then we have

[Z : Z3] = [J : J3] · [E : E3].

Thus in the field C we have [Z : Z3] = 3s+1. On the other hand [Z : Z3] ≥ 3r,
since the α′

1, α
′
2, . . . , α′

r form an independent (but not necessarily complete) system
of representatives for the factor group Z/Z3. This implies

r ≤ s+ 1.

Now we apply the same reasoning to C and K with their roles reversed, where
we have to observe that the cyclic unit group in C disappears in K, which means
that we simply have [Z : Z3] = 3r. On the other hand we have [Z : Z3] ≥ 3s since

2See H. Hasse: Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer
Grundlage, Math. Z. 31 (1930), pp. 565–582; §4.

3Extensions are called independent if the degree of their compositum is the product of the

degrees of the extensions.
4See e.g. Ph. Furtwängler: Allgemeiner Existenzbeweis für den Klassenkörper eines beliebigen

algebraischen Zahlkörpers, Math. Ann. 63 (1907), S. 1–37.
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the wealth of ideal classes of C has the same effect on K as above that of K on C.
Thus also here we have s ≤ r.

This finishes the proof of our theorem. We did not need the decisive property
of singular prime elements in CK for finding the estimate on the ranks of the class
groups but only the property that they are ideal cubes. For deciding whether r = s
or r = s + 1, then we have to use the other property of singular elements, that of
being primary (cubic residue modulo 33/2). For this property, the scope narrowed
by the relation s ≤ r ≤ s+ 1. For if we collect the independent ideal cubes from K
and C into a system

ρ1, ρ2, . . . , ρr; σ1, σ2, . . . , σs, ε

where ε denotes the fundamental unit in C, then all elements except one (if the basis
is suitably chosen) are used for forming the Hilbert 3-class fields of C and K. Either
all the ρ1, . . . , ρr are primary (r = s), or all the σ1, . . . , σs, ε are (r = s + 1). The
remaining element τ in C or K is not primary: first it is independent in CK from
the other elements with respect to cubes of elements: for according to the theorem
mentioned above (footnote 1) the 3-class group of CK is the direct product of the
3-class groups of K and C; thus there cannot exist any “cubic relation” among the
r + s + 1 elements. Thus CK(3

√
τ ) is not an unramified abelian extension, but

rather a class field with conductor f 6= 1; but since τ is an ideal cube, we have
1 6= f | 33/2 and thus τ 6≡ γ3 mod 33/2 according to footnote 4.

If one starts looking for such an element τ in order to decide whether r = s or
r = s+ 1, then it is not necessary to perform the cubic residue test modulo 33/2 in
CK; in fact it is sufficient to check this in C or K, that is, in the field to which the
element belongs. (In that field in which the number 3 is not an ideal square this
boils down to investigating the cubic residue character modulo 9.) In fact, both
in CK and Q(

√
−3 ), the residue class group modulo 33/2 does not contain any

residues of order 9, which is clear in the case where 3 splits into prime ideals of
degree 1 in C or K (whichever field is the one with the discriminant coprime to 3),
and which can easily be checked by a little computation in the other case where 3
does not split. Thus a number that is not a cubic residue (mod 33/2) in a subfield
of CK cannot become a cubic residue (mod 33/2) in CK.

The fact that we only have to compute in quadratic number fields clearly sim-
plifies the investigation. If, for example, the fundamental unit of C is known and
if it is not a cubic residue, then we already know that r = s. If the unit is a cubic
residue, then both cases can occur, but in this case the class number of K is cer-
tainly divisible by 3 (r > 0); for if s = 0, then the element τ , which is not primary,
must occur among the elements ρ1, . . . , ρr. – In the general case s can be deter-
mined if the ideal class group (with representatives) of K is known; conversely we
can determine r if the ideal class group and the fundamental unit of C are known.

Submitted May 6, 1931.

Translated5 by Franz Lemmermeyer

5I have replaced Scholz’s notation P (a Greek Rho) for the field of rational numbers throughout
by Q.


